50

The LDAP guys.

The Lightning Memory-Mapped
Database (LMDB)

Howard Chu

CTO, Symas Corp. hyc@symas.com
Chief Architect, OpenLDAP hyc@openidap.org

mailto:hyc@symas.com
mailto:hyc@openldap.org

50

The LDAP guys.

OpenLDAP Project

* Open source code project

 Founded 1998

 Three core team members

A dozen or so contributors

* Feature releases every 18-24 months
 Maintenance releases as needed

70O

The LDAP guys.

A Word About Symas

* Founded 1999

* Founders from Enterprise Software world
 PLATINUM technology (Locus Computing)
 IBM

 Howard joined OpenLDAP in 1999

* One of the Core Team members
» Appointed Chief Architect January 2007

50

The LDAP guys.

Topics

 Overview
* Background
 Features
e Internals

e Special Features
* Results

70O

The LDAP guys.

Overview

 OpenLDAP has been delivering reliable, high
performance for many years

* The performance comes at the cost of fairly
complex tuning requirements

 The implementation is not as clean as it could
be; it is not what was originally intended

» Cleaning it up requires not just a new server
backend, but also a new low-level database

 The new approach has a huge payoff

70O

The LDAP guys.

Background

* OpenLDAP provides a number of reliable, high
performance transactional backends

» Based on Oracle BerkeleyDB (BDB)

* back-bdb released with OpenLDAP 2.1 in 2002
* back-hdb released with OpenLDAP 2.2 in 2003
 |ntensively analyzed for performance

» World's fastest since 2005

 Many heavy users with zero downtime

70O

The LDAP guys.

Background

* These backends have always required careful,
complex tuning

e Data comes through three separate layers of
caches

« Each cache layer has different size and speed
characteristics

« Balancing the three layers against each other can
be a difficult juggling act

* Performance without the backend caches is
unacceptably slow - over an order of magnitude...

70O

The LDAP guys.

Background

* The backend caching significantly increased
the overall complexity of the backend code

* Two levels of locking required, since the BDB
database locks are too slow

» Deadlocks occurring routinely in normal operation,
requiring additional backoff/retry logic

70O

The LDAP guys.

Background

 The caches were not always beneficial, and
were sometimes detrimental

e data could exist in 3 places at once - filesystem,
database, and backend cache - thus wasting
memory

e searches with result sets that exceeded the
configured cache size would reduce the cache
effectiveness to zero

* malloc/free churn from adding and removing entries
In the cache could trigger pathological heap
behavior in libc malloc

50

The LDAP guys.

Background

e Overall the backends required too much
attention

* Too much developer time spent finding
workarounds for inefficiencies

e Too much administrator time spent tweaking
configurations and cleaning up database
transaction logs

70O

The LDAP guys.

Obvious Solutions

« Cache management is a hassle, so don't do
any caching

* The filesystem already caches data, there's no
reason to duplicate the effort

* Lock management is a hassle, so don't do any
locking

» Use Multi-Version Concurrency Control (MVCC)

« MVCC makes it possible to perform reads with no
locking

70O

The LDAP guys.

Obvious Solutions

 BDB supports MVCC, but it still requires
complex caching and locking

* To get the desired results, we need to abandon
BDB

» Surveying the landscape revealed no other
database libraries with the desired
characteristics

e Time to write our own...

70O

The LDAP guys.

OpenLDAP LMDB

 Features At A Glance

« Key/Value store using B+trees
* Fully transactional, ACID compliant
« MVCC, readers never block
« Uses memory-mapped files, needs no tuning
» Crash-proof, no recovery needed after restart
* Highly optimized, extremely compact

- under 40KB object code, fits in CPU L1 Icache

« Runs on most modern OSs
— Linux, Android, *BSD, MacOSX, Solaris, Windows, etc...

50

The LDAP guys.

Features

e Concurrency Support

* Both multi-process and multi-thread
* Single Writer + N Readers

— Writers don't block readers

- Readers don't block writers

- Reads scale perfectly linearly with available CPUs
- No deadlocks

Full isolation with MVVCC
Nested transactions

Batched writes

50

The LDAP guys.

Features

» Uses Copy-on-Write

Live data is never overwritten

Database structure cannot be corrupted by
Incomplete operations (system crashes)

No write-ahead logs needed
No transaction log cleanup/maintenance
No recovery needed after crashes

50

The LDAP guys.

Features

» Uses Single-Level-Store

* Reads are satisfied directly from the memory map
- no malloc or memcpy overhead

* Writes can be performed directly to the memory map
- no write buffers, no buffer tuning

* Relies on the OS/filesystem cache
- no wasted memory in app-level caching

« Can store live pointer-based objects directly

- using a fixed address map
- minimal marshalling, no unmarshalling required

The LDAP guys.

Single-Level Store

* The approach is only viable if process address
spaces are larger than the expected data
volumes

* For 32 bit processors, the practical limit on data
size is under 2GB

 For common 64 bit processors which only
Implement 48 bit address spaces, the limit is 47 bits

or 128 terabytes
 The upper bound at 63 bits is 8 exabytes

The LDAP guys.

Implementation Highlights

» Resulting library was under 32KB of object
code

 Compared to the original btree.c at 39KB
« Compared to BDB at 1.5MB

* APl is loosely modeled after the BDB API to
ease migration of back-bdb code to use LMDB

« Everything is much simpler than BDB

50

The LDAP guys.

Config Comparison

« LMDB config is simple, e.g. slapd
database mdb
directory /var/lib/ldap/data/mdb
maxsize 4294967296

» BDB config is complex
database hdb
directory /var/lib/ldap/data/hdb
cachesize 50000
idlcachesize 50000
dbconfig set cachesize 4 0 1
dbconfig set lg regionmax 262144
dbconfig set 1lg bsize 2097152
dbconfig set 1lg dir /mnt/logs/hdb
dbconfig set 1k max locks 3000
dbconfig set 1k max objects 1500
dbconfig set 1k max lockers 1500

50

The LDAP guys.

Internals

» B+tree Operation

* Append-only, Copy-on-Write

e Corruption-Proof
* Free Space Management

* Avoiding Compaction/Garbage Collection
* Transaction Handling

» Avoiding Locking

70O

The LDAP guys.

B+tree Operation

* How Append-Only/Copy-On-Write Works

In a pure append-only approach, no data is ever
overwritten

Pages that are meant to be modified are copied
The modification is made on the copy
The copy is written to a new disk page

The structure is inherently multi-version; you can
find any previous version of the database by starting
at the root node corresponding to that version

50O

The LDAP guys.

B+tree Operation

Start with a simple tree

50

The LDAP guys.

B+tree Operation

Update a leaf node by copying it and
updating the copy

50

The LDAP guys.

B+tree Operation

Copy the root node, and point it at the new leaf

50

The LDAP guys.

B+tree Operation

The old root and old leaf remain as a
previous version of the tree

50

The LDAP guys.

B+tree Operation

Further updates create additional versions

50

The LDAP guys.

B+tree Operation

50

The LDAP guys.

B+tree Operation

yd —
P o
o <
S
o
/ —
S
v —
S
S
S
o
S
o
S
S
y
d
e
/.

The LDAP guys.

B+tree Operation

SN

The LDAP guys.

B+tree Operation

* How Append-Only/Copy-On-Write Works

» Updates are always performed bottom up

* Every branch node from the leaf to the root must be
copied/modified for any leaf update

* Any node not on the path from the leaf to the root is
left unaltered

* The root node is always written last

50

The LDAP guys.

B+tree Operation

* In the Append-Only tree, new pages are always appended
sequentially to the database file

While there's significant overhead for making complete copies of
modified pages, the actual I/O is linear and relatively fast

The root node is always the last page of the file, unless there was a
system crash

Any root node can be found by searching backward from the end of
the file, and checking the page's header
Recovery from a system crash is relatively easy

- Everything from the last valid root to the beginning of the file is always
pristine

- Anything between the end of the file and the last valid root is discarded

70O

The LDAP guys.

B+tree Operation

* Append-Only disk usage is very inefficient

Disk space usage grows without bound

99+% of the space will be occupied by old versions
of the data

The old versions are usually not interesting

Reclaiming the old space requires a very expensive
compaction phase

New updates must be throttled until compaction
completes

50

The LDAP guys.

B+tree Operation

 The LMDB Approach

o Still Copy-on-Write, but using two fixed root nodes

- Page 0 and Page 1 of the file, used in double-buffer
fashion

- Even faster cold-start than Append-Only, no searching
needed to find the last valid root node

- Any app always reads both pages and uses the one with
the greater Transaction ID stamp in its header

- Consequently, only 2 outstanding versions of the DB
exist, not fully "multi-version"

50

The LDAP guys.

B+tree Operation

The root nodes have a transaction ID stamp

50

The LDAP guys.

B+tree Operation

50

The LDAP guys.

B+tree Operation

50

The LDAP guys.

B+tree Operation

50

The LDAP guys.

B+tree Operation

After this step the old blue page is no longer referenced by
anything else in the database, so it can be reclaimed

50

The LDAP guys.

B+tree Operation

50

The LDAP guys.

B+tree Operation

After this step the old yellow page is no longer referenced by
anything else in the database, so it can also be reclaimed

70O

The LDAP guys.

Free Space Management

« LMDB maintains two B+trees per root node

* One storing the user data, as illustrated above

* One storing lists of IDs of pages that have been
freed in a given transaction

e Old, freed pages are used in preference to new
pages, so the DB file size remains relatively static
over time

 No compaction or garbage collection phase is ever
needed

The LDAP guys.

Free Space Management

Meta Page Meta Page

Pgno: 0 Pgno: 1
Misc... Misc...
TXN: 0 TXN: 0

FRoot: EMPTY FRoot: EMPTY
DRoot: EMPTY DRoot: EMPTY

50

The LDAP guys.

Free Space Management

Meta Page Meta Page Data Page
Pgno: 0 Pgno: 1 Pgno: 2
Misc... Misc... Misc...
TXN: 0 TXN: 0 offset: 4000

FRoot: EMPTY
DRoot: EMPTY

FRoot: EMPTY
DRoot: EMPTY

1,foo

50

The LDAP guys.

Free Space Management

Meta Page Meta Page Data Page

Pgno: 0 Pgno: 1 Pgno: 2
Misc... Misc... Misc...
TXN: 0 TXN: 1 offset: 4000

FRoot: EMPTY FRoot: EMPTY
DRoot: EMPTY DRoot: 2

1,foo

50

The LDAP guys.

Free Space Management

Meta Page Meta Page Data Page Data Page
Pgno: 0 Pgno: 1 Pgno: 2 Pgno: 3
Misc... Misc... Misc... Misc...
TXN: 0 TXN: 1 offset: 4000 offset: 4000
FRoot: EMPTY FRoot: EMPTY offset: 3000
DRoot: EMPTY DRoot: 2 2,bar

1,foo 1,foo

50

The LDAP guys.

Free Space Management

Meta Page Meta Page Data Page Data Page Data Page
Pgno: 0 Pgno: 1 Pgno: 2 Pgno: 3 Pgno: 4
Misc... Misc... Misc... Misc... Misc...
TXN: 0 TXN: 1 offset: 4000 offset: 4000 offset: 4000
FRoot: EMPTY FRoot: EMPTY offset: 3000
DRoot: EMPTY DRoot: 2 2,bar

1,foo 1,foo txn 2,page 2

50

The LDAP guys.

Free Space Management

Meta Page Meta Page Data Page Data Page Data Page
Pgno: O Pgno: 1 Pgno: 2 Pgno: 3 Pgno: 4
Misc... Misc... Misc... Misc... Misc...
TXN: 2 TXN: 1 offset: 4000 offset: 4000 offset: 4000
FRoot: 4 FRoot: EMPTY offset: 3000
DRoot: 3 DRoot: 2 2,bar

1,foo 1,foo txn 2,page 2

50

The LDAP guys.

Free Space Management

Meta Page Meta Page Data Page Data Page Data Page
Pgno: 1 Pgno: 2
Misc... Misc...
TXN: 1 offset: 4000
FRoot: EMPTY
DRoot: 2
1,foo

Data Page

50

The LDAP guys.

Free Space Management

Meta Page Meta Page Data Page Data Page Data Page
Pgno: 1 Pgno: 2
Misc... Misc...
TXN: 1 offset: 4000
FRoot: EMPTY
DRoot: 2
1,foo

Data Page Data Page

50

The LDAP guys.

Free Space Management

Data Page Data Page

Meta Page Meta Page Data Page
Pgno: 2
Misc...
offset: 4000

1,foo

Data Page Data Page

50

" Free Space Management

Meta Page Meta Page Data Page Data Page Data Page

Data Page Data Page

50

" Free Space Management

Meta Page Meta Page Data Page Data Page Data Page

Data Page Data Page Data Page

50

The LDAP guys.

Meta Page

Data Page

Meta Page

Data Page

Data Page

Data Page

Free Space Management

Data Page Data Page
Pgno: 3 Pgno: 4
Misc... Misc...
offset: 4000 offset: 4000
offset: 3000

2,bar

1,foo txn 2,page 2

70O

The LDAP guys.

Free Space Management

 Caveat: If a read transaction is open on a
particular version of the DB, that version and
every version after it are excluded from page
reclaiming

* Thus, long-lived read transactions should be
avoided, otherwise the DB file size may grow
rapidly, devolving into the Append-Only
behavior until the transactions are closed

50

The LDAP guys.

Transaction Handling

 LMDB supports a single writer concurrent with many readers
« A single mutex serializes all write transactions
* The mutex is shared/multiprocess

* Readers run lockless and never block
« But for page reclamation purposes, readers are tracked

* Transactions are stamped with an ID which is a monotonically
Increasing integer
 The ID is only incremented for Write transactions that actually modify data

« |f a Write transaction is aborted, or committed with no changes, the same
ID will be reused for the next Write transaction

70O

The LDAP guys.

Transaction Handling

* Transactions take a snapshot of the currently valid meta
page at the beginning of the transaction

 No matter what write transactions follow, a read
transaction’s snapshot will always point to a valid
version of the DB

* The snapshot is totally isolated from subsequent writes

* This provides the Consistency and Isolation in ACID
semantics

70O

The LDAP guys.

Transaction Handling

* The currently valid meta page is chosen based
on the greatest transaction ID in each meta

page

 The meta pages are page and CPU cache aligned
 The transaction ID is a single machine word

* The update of the transaction ID is atomic

* Thus, the Atomicity semantics of transactions are
guaranteed

70O

The LDAP guys.

Transaction Handling

* During Commit, the data pages are written and then
synchronously flushed before the meta page is
updated

t

'hen the meta page is written synchronously

'hus, when a commit returns "success”, it is guaranteed
hat the transaction has been written intact

'his provides the Durability semantics

If the system crashes before the meta page is updated,

t

hen the data updates are irrelevant

70O

The LDAP guys.

Transaction Handling

* For tracking purposes, Readers must acquire a slot in
the readers table

* The readers table is also in a shared memory map, but
separate from the main data map

* This is a simple array recording the Process ID, Thread ID,
and Transaction ID of the reader

* The first time a thread opens a read transaction, it must
acquire a mutex to reserve a slot in the table

* The slot ID is stored in Thread Local Storage; subsequent
read transactions performed by the thread need no further
locks

50

The LDAP guys.

Transaction Handling

 Write transactions use pages from the free list before
allocating new disk pages

» Pages in the free list are used in order, oldest transaction first

* The readers table must be scanned to see if any reader is
referencing an old transaction

« The writer doesn't need to lock the reader table when performing
this scan - readers never block writers

- The only consequence of scanning with no locks is that the writer may
see stale data

- This is irrelevant, newer readers are of no concern; only the oldest
readers matter

70O

The LDAP guys.

Special Features

* Explicit Key Types

e Support for reverse byte order comparisons, as well
as native binary integer comparisons

* Minimizes the need for custom key comparison
functions, allows DBs to be used safely by
applications without special knowledge

- Reduces the danger of corruption that Berkeley
databases were vulnerable to, when custom key
comparators were used

The LDAP guys.

Special Features

 Append Mode

» Ultra-fast writes when keys are added in sequential
order

* Bypasses standard page-split algorithm when
pages are filled, avoids unnecessary memcpy's

» Allows databases to be bulk loaded at the full
sequential write speed of the underlying storage
system

50

The LDAP guys.

Special Features

e Reserve Mode

» Allocates space in write buffer for data of user-
specified size, returns address

» Useful for data that is generated dynamically
iInstead of statically copied

« Allows generated data to be written directly to DB
output buffer, avoiding unnecessary memcpy

70O

The LDAP guys.

Special Features

* Fixed Mapping

Uses a fixed address for the memory map

Allows complex pointer-based data structures to be
stored directly with minimal serialization

Objects using persistent addresses can thus be
read back with no deserialization

Useful for object-oriented databases, among other
purposes

The LDAP guys.

Special Features

« Sub-databases

« Store multiple independent named B+trees in a single
LMDB environment

* A SubDB is simply a key/data pair in the main DB,
where the data item is the root node of another tree

« Allows many related databases to be managed easily

- Used in back-mdb for the main data and all of the associated
Indices
- Used in SQLightning for multiple tables and indices

50

The LDAP guys.

Special Features

e Sorted Duplicates

Allows multiple data values for a single key

Values are stored in sorted order, with customizable
comparison functions

When the data values are all of a fixed size, the values
are stored contiguously, with no extra headers

— maximizes storage efficiency and performance
Implemented by the same code as SubDB support
- maximum coding efficiency

50

The LDAP guys.

Special Features

 Atomic Hot Backup

 The entire database can be backed up live
 No need to stop updates while backups run

 The backup runs at the maximum speed of the
target storage medium

» Essentially: write(outfd, map, mapsize);
- no memcpy's in or out of user space
- pure DMA from the database to the backup

70O

The LDAP guys.

Results

e Support for LMDB is already available for many
open source projects:

 OpenLDAP slapd - back-mdb backend

e Cyrus SASL - sasldb plugin

 Heimdal Kerberos - hdb plugin
 OpenDKIM - main data store

« SQLite3 - replacing the original Btree code
« MemcacheDB - replacing BerkeleyDB

» Postfix - replacing BerkeleyDB

« CfEngine - replacing Tokyo Cabinet/QDBM

50

The LDAP guys.

Results

 Wrappers for many other languages besides C
are available:

e CH++

e Erlang

 Lua

* Python

 Ruby

Java wrapper being developed

50

The LDAP guys.

Results

« Coming Soon

* Riak - Erlang LMDB wrapper already available
« SQLite4 - in progress

 MariaDB - in progress

 HyperDex - in progress

« XDAndroid - port of Android using SQLite3 based
on LMDB

* Mozilla/Firefox - using SQLite3 based on LMDB

50

The LDAP guys.

Results

* In OpenLDAP slapd

 LMDB reads are 5-20x faster than BerkeleyDB
* Writes are 2-5x faster than BerkeleyDB
 Consumes 1/4 as much RAM as BerkeleyDB

e In SQLite3

 Writes are 10-25x faster than stock SQLite3

* Reads .. performance is overshadowed by SQL
inefficiency

50

The LDAP guys.

Results

 [In MemcacheDB

 LMDB reads are 2-200x faster than BerkeleyDB
* Writes are 5-900x faster than BerkeleyDB

* Multi-thread reads are 2-8x faster than pure-
memory Memcached

- Single-thread reads are about the same
— Writes are about 20% slower

50

The LDAP guys.

Results

* Full benchmark reports are available on the
LMDB page

e http://www.symas.com/mdb/

» Supported builds of LMDB-based packages
available from Symas

e http://www.symas.com/
 OpenlLDAP, Cyrus-SASL, Heimdal Kerberos
« MemcacheDB coming soon

http://www.symas.com/mdb/
http://www.symas.com/

70O

" Microbenchmark Results

 Comparisons based on Google's LevelDB

* Also tested against Kyoto Cabinet's TreeDB,
SQLite3, and BerkeleyDB

» Tested using RAM filesystem (tmpfs), reiserfs
on SSD, and multiple filesystems on HDD

o btrfs, ext2, ext3, ext4, jfs, ntfs, reiserfs, xfs, zfs

» ext3, ext4, jfs, reiserfs, xfs also tested with external
journals

70O

The LDAP guys.

* Relative Footprint

text
272247
1675911
90423
653480
296572

data

1456
2288
1508
7768
4808

bss

328
304
304
1688
1096

dec
274031
1678503
92235
662936
302476

hex
42e6f
199ca7
1684b
a2764
49d8c

Microbenchmark Results

filename
db_bench
db_bench bdb
db_bench _mdb
db_bench_sqlite3
db_bench_tree db

* Clearly LMDB has the smallest footprint

» Carefully written C code beats C++ every time

The LDAP guys.

16000000

14000000

12000000

10000000

8000000

6000000

4000000

2000000

0

Microbenchmark Results

Read Performance

Small Records

B SQLite3 ®m TreeDB

Sequential

LevelDB m BDB m MDB

800000

700000

600000

500000

400000

300000

200000

100000

0

Read Performance

Small Records

H SQLite3 ®m TreeDB

Random

LevelDB m BDB m MDB

The LDAP guys.

Microbenchmark Results

Read Performance

Large Records

35000000
30303030
30000000
25000000
20000000
15000000

10000000

5000000
7402 16514 299133 9133

Sequential

B SQLite3 m TreeDB I LevelDB mBDB m MDB

Read Performance
Large Records

2000000
1800000 1718213
1600000
1400000
1200000
1000000
800000
600000
400000
200000

7047 14518 15183 8646

Random

H SQLite3 mTreeDB " LevelDB mBDB m MDB

The LDAP guys.

100000000
10000000
1000000
100000
10000
1000

100

10

1

B SQLite3 ®m TreeDB

Read Performance

Large Records

299133

16514

Sequential

30303030

LevelDB m BDB m MDB

Log Scale

10000000
1000000
100000
10000
1000

100

10

H SQLite3 ®m TreeDB

Microbenchmark Results

Read Performance

Large Records

1718213

14518 15183

7047

Random

LevelDB m BDB m MDB

The LDAP guys.

14000

12000

10000

8000

6000

4000

2000

Microbenchmark Results

Asynchronous Write Performance

Large Records, tmpfs

5860

B SQLite3 ®m TreeDB

12905

3366

Sequential

LevelDB m BDB m MDB

14000

12000

10000

8000

6000

4000

2000

Asynchronous Write Performance

Large Records, tmpfs

12735

5709

742

Random

H SQLite3 mTreeDB " LevelDB mBDB m MDB

The LDAP guys.

14000

12000

10000

8000

6000

4000

2000

Microbenchmark Results

Batched Write Performance

Large Records, tmpfs

5860

B SQLite3 ®m TreeDB

13215

3138

Sequential

LevelDB m BDB m MDB

14000

12000

10000

8000

6000

4000

2000

Batched Write Performance

Large Records, tmpfs

13099

5709

3079

Random

H SQLite3 mTreeDB " LevelDB mBDB m MDB

The LDAP guys.

14000

12000

10000

8000

6000

4000

2000

Microbenchmark Results

Synchronous Write Performance

Large Records, tmpfs

3121
2026

B SQLite3 ®m TreeDB

12916

3368

Sequential

LevelDB m BDB m MDB

14000

12000

10000

8000

6000

4000

2000

Synchronous Write Performance

Large Records, tmpfs

12665

1996 2162
745

Random

H SQLite3 mTreeDB " LevelDB mBDB m MDB

70O

" Microbenchmark Results

Synchronous Write Performance ® TeSt ra n d O m er te
Large Records, SSD, 40GB pe rfo rmance Wh en D B
Is 5x larger than RAM

» Supposedly a best
case for LevelDB and
worst case for B-trees

3.42

 Result in MB/sec,
higher is better

LevelDB m MDB

o - N W A O » ~ © ©

50

The LDAP guys.

Benchmarking...

 LMDB in real applications

e MemcacheDB, tested with memcachetest

 The OpenLDAP slapd server, using the back-mdb
slapd backend

The LDAP guys.

msec

100

10

0.1

0.01

MemcacheDB

Read Performance

Single Thread, Log Scale

BDB 4.7

Memcached

H min

M avg
max90th

B max95th

B max99th
max

msec

1000

100

10

0.1

0.01

Write Performance

Single Thread, Log Scale

BDB 4.7

Memcached

H min

W avg
max90th

B max95th

B max99th
max

The LDAP guys.

msecC

10

0.1

0.01

MemcacheDB

Read Performance

BDB 4.7

4 Threads, Log Scale

il

Memcached

H min

M avg
max90th

B max95th

B max99th

msec

1000

100

10

0.

—_

0.01

Write Performance

4 Threads, Log Scale

dll il 2

BDB 4.7

Memcached

H min

M avg
max90th

B max95th

B max99th
max

50

The LDAP guys.

Slapd Results

Time to slapadd -q 5 million entries

hdb single

00:50:08

hdb double
00:45:59

hdb multi = real

W user
sys

00:52:50

mdb single

00:27:05

mdb double

00:24:16

mdb multi

00:29:47

00:00:00 00:14:24 00:28:48 00:43:12 00:57:36 01:12:00 01:26:24 01:40:48 01:55:12

Time HH:MM:SS

50

The LDAP guys.

GB

30

25

20

15

10

()}

Slapd Results

slapd size

Process and DB sizes

DB size

® hdb
B mdb

50

The LDAP guys.

Slapd Results

Initial / Concurrent Search Times
05:02.40

04:19.20 04:15.40

03:36.00

03:04.46

® hdb
B mdb

02:52.80
02:09.60

01:26.40
01:04.82

00:43.20 00:32.17

00:24.62
00:16.20
T e y
2nd 2 4

00:00.00
1st

50

The LDAP guys.

Slapd Results

SLAMD Search Rate Comparison

140000
120000
100000
m hdb
80000 B mdb
other 1
M other 2
60000
40000
20000
0

Searches/sec

50

The LDAP guys.

Slapd Results

Modifications/sec, Reported by Zimbra

Single Node
2500
2000
1500 ® hdb
B mdb
1000
500
0

Modifies/sec

50

The LDAP guys.

Slapd Results

Modifications/sec, Reported by Zimbra

Single Node, Log Scale

10000

1998.14

1000

® hdb
B mdb
100

10

Modifies/sec

50

The LDAP guys.

Slapd Results

Modifications/sec, Reported by Zimbra

Delta-Sync Provider

1600

1400

1200

1000 H hdb

B mdb
800

600

400

200

Modifies/sec

50

The LDAP guys.

Slapd Results

Modifications/sec, Reported by Zimbra

Delta-Sync Provider, Log Scale

10000

1357.38

1000

® hdb
B mdb
100

10

Modifies/sec

