
  

S Y M S
The LDAP guys.

TM

A

The Lightning Memory-Mapped 
Database (LMDB)

Howard Chu
CTO, Symas Corp.  hyc@symas.com

Chief Architect, OpenLDAP  hyc@openldap.org

mailto:hyc@symas.com
mailto:hyc@openldap.org


  

S Y M S
The LDAP guys.

TM

A

OpenLDAP Project

● Open source code project
● Founded 1998
● Three core team members
● A dozen or so contributors
● Feature releases every 18-24 months
● Maintenance releases as needed



  

S Y M S
The LDAP guys.

TM

A

A Word About Symas

● Founded 1999
● Founders from Enterprise Software world

● PLATINUM technology (Locus Computing)
● IBM

● Howard joined OpenLDAP in 1999
● One of the Core Team members
● Appointed Chief Architect January 2007



  

S Y M S
The LDAP guys.

TM

A

Topics

● Overview
● Background 
● Features
● Internals
● Special Features
● Results



  

S Y M S
The LDAP guys.

TM

A

Overview

● OpenLDAP has been delivering reliable, high 
performance for many years

● The performance comes at the cost of fairly 
complex tuning requirements

● The implementation is not as clean as it could 
be; it is not what was originally intended

● Cleaning it up requires not just a new server 
backend, but also a new low-level database

● The new approach has a huge payoff



  

S Y M S
The LDAP guys.

TM

A

Background

● OpenLDAP provides a number of reliable, high 
performance transactional backends
● Based on Oracle BerkeleyDB (BDB)
● back-bdb released with OpenLDAP 2.1 in 2002
● back-hdb released with OpenLDAP 2.2 in 2003
● Intensively analyzed for performance
● World's fastest since 2005
● Many heavy users with zero downtime



  

S Y M S
The LDAP guys.

TM

A

Background

● These backends have always required careful, 
complex tuning
● Data comes through three separate layers of 

caches
● Each cache layer has different size and speed 

characteristics
● Balancing the three layers against each other can 

be a difficult juggling act
● Performance without the backend caches is 

unacceptably slow - over an order of magnitude...



  

S Y M S
The LDAP guys.

TM

A

Background

● The backend caching significantly increased 
the overall complexity of the backend code
● Two levels of locking required, since the BDB 

database locks are too slow
● Deadlocks occurring routinely in normal operation, 

requiring additional backoff/retry logic



  

S Y M S
The LDAP guys.

TM

A

Background

● The caches were not always beneficial, and 
were sometimes detrimental
● data could exist in 3 places at once - filesystem, 

database, and backend cache - thus wasting 
memory

● searches with result sets that exceeded the 
configured cache size would reduce the cache 
effectiveness to zero

● malloc/free churn from adding and removing entries 
in the cache could trigger pathological heap 
behavior in libc malloc



  

S Y M S
The LDAP guys.

TM

A

Background

● Overall the backends required too much 
attention
● Too much developer time spent finding 

workarounds for inefficiencies
● Too much administrator time spent tweaking 

configurations and cleaning up database 
transaction logs



  

S Y M S
The LDAP guys.

TM

A

Obvious Solutions

● Cache management is a hassle, so don't do 
any caching
● The filesystem already caches data, there's no 

reason to duplicate the effort

● Lock management is a hassle, so don't do any 
locking
● Use Multi-Version Concurrency Control (MVCC)
● MVCC makes it possible to perform reads with no 

locking



  

S Y M S
The LDAP guys.

TM

A

Obvious Solutions

● BDB supports MVCC, but it still requires 
complex caching and locking

● To get the desired results, we need to abandon 
BDB

● Surveying the landscape revealed no other 
database libraries with the desired 
characteristics

● Time to write our own...



  

S Y M S
The LDAP guys.

TM

A

OpenLDAP LMDB

● Features At A Glance
● Key/Value store using B+trees
● Fully transactional, ACID compliant
● MVCC, readers never block
● Uses memory-mapped files, needs no tuning
● Crash-proof, no recovery needed after restart
● Highly optimized, extremely compact

– under 40KB object code, fits in CPU L1 Icache
● Runs on most modern OSs

– Linux, Android, *BSD, MacOSX, Solaris, Windows, etc...



  

S Y M S
The LDAP guys.

TM

A

Features

● Concurrency Support
● Both multi-process and multi-thread
● Single Writer + N Readers

– Writers don't block readers
– Readers don't block writers
– Reads scale perfectly linearly with available CPUs
– No deadlocks

● Full isolation with MVCC
● Nested transactions
● Batched writes



  

S Y M S
The LDAP guys.

TM

A

Features

● Uses Copy-on-Write
● Live data is never overwritten
● Database structure cannot be corrupted by 

incomplete operations (system crashes)
● No write-ahead logs needed
● No transaction log cleanup/maintenance
● No recovery needed after crashes



  

S Y M S
The LDAP guys.

TM

A

Features

● Uses Single-Level-Store
● Reads are satisfied directly from the memory map

– no malloc or memcpy overhead
● Writes can be performed directly to the memory map

– no write buffers, no buffer tuning
● Relies on the OS/filesystem cache

– no wasted memory in app-level caching
● Can store live pointer-based objects directly

– using a fixed address map
– minimal marshalling, no unmarshalling required



  

S Y M S
The LDAP guys.

TM

A

Single-Level Store

● The approach is only viable if process address 
spaces are larger than the expected data 
volumes
● For 32 bit processors, the practical limit on data 

size is under 2GB
● For common 64 bit processors which only 

implement 48 bit address spaces, the limit is 47 bits 
or 128 terabytes

● The upper bound at 63 bits is 8 exabytes



  

S Y M S
The LDAP guys.

TM

A

Implementation Highlights

● Resulting library was under 32KB of object 
code
● Compared to the original btree.c at 39KB
● Compared to BDB at 1.5MB

● API is loosely modeled after the BDB API to 
ease migration of back-bdb code to use LMDB

● Everything is much simpler than BDB



  

S Y M S
The LDAP guys.

TM

A

Config Comparison

● LMDB config is simple, e.g. slapd

    database mdb

    directory /var/lib/ldap/data/mdb

    maxsize 4294967296

● BDB config is complex

    database hdb

    directory /var/lib/ldap/data/hdb

    cachesize 50000

    idlcachesize 50000

    dbconfig set_cachesize 4 0 1

    dbconfig set_lg_regionmax 262144

    dbconfig set_lg_bsize 2097152

    dbconfig set_lg_dir /mnt/logs/hdb

    dbconfig set_lk_max_locks 3000

    dbconfig set_lk_max_objects 1500

    dbconfig set_lk_max_lockers 1500



  

S Y M S
The LDAP guys.

TM

A

Internals

● B+tree Operation
● Append-only, Copy-on-Write
● Corruption-Proof

● Free Space Management
● Avoiding Compaction/Garbage Collection

● Transaction Handling
● Avoiding Locking



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

● How Append-Only/Copy-On-Write Works
● In a pure append-only approach, no data is ever 

overwritten
● Pages that are meant to be modified are copied
● The modification is made on the copy
● The copy is written to a new disk page
● The structure is inherently multi-version; you can 

find any previous version of the database by starting 
at the root node corresponding to that version



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

Start with a simple tree



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

Update a leaf node by copying it and 
updating the copy



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

Copy the root node, and point it at the new leaf



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

The old root and old leaf remain as a 
previous version of the tree



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

Further updates create additional versions



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

● How Append-Only/Copy-On-Write Works
● Updates are always performed bottom up
● Every branch node from the leaf to the root must be 

copied/modified for any leaf update
● Any node not on the path from the leaf to the root is 

left unaltered
● The root node is always written last



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

● In the Append-Only tree, new pages are always appended 
sequentially to the database file
● While there's significant overhead for making complete copies of 

modified pages, the actual I/O is linear and relatively fast
● The root node is always the last page of the file, unless there was a 

system crash
● Any root node can be found by searching backward from the end of 

the file, and checking the page's header
● Recovery from a system crash is relatively easy

– Everything from the last valid root to the beginning of the file is always 
pristine

– Anything between the end of the file and the last valid root is discarded



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

● Append-Only disk usage is very inefficient
● Disk space usage grows without bound
● 99+% of the space will be occupied by old versions 

of the data
● The old versions are usually not interesting
● Reclaiming the old space requires a very expensive 

compaction phase
● New updates must be throttled until compaction 

completes



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

● The LMDB Approach
● Still Copy-on-Write, but using two fixed root nodes

– Page 0 and Page 1 of the file, used in double-buffer 
fashion

– Even faster cold-start than Append-Only, no searching 
needed to find the last valid root node

– Any app always reads both pages and uses the one with 
the greater Transaction ID stamp in its header

– Consequently, only 2 outstanding versions of the DB 
exist, not fully "multi-version"



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

The root nodes have a transaction ID stamp

00



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

00



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

0 1



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

0 1



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

1

After this step the old blue page is no longer referenced by
anything else in the database, so it can be reclaimed

2



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

12



  

S Y M S
The LDAP guys.

TM

A

B+tree Operation

2 3

After this step the old yellow page is no longer referenced by
anything else in the database, so it can also be reclaimed



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

● LMDB maintains two B+trees per root node
● One storing the user data, as illustrated above
● One storing lists of IDs of pages that have been 

freed in a given transaction
● Old, freed pages are used in preference to new 

pages, so the DB file size remains relatively static 
over time

● No compaction or garbage collection phase is ever 
needed



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 0
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 1
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 0
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 1
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 0
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 0
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 0
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 6
Misc...
offset: 4000
offset: 3000
txn 3,page 3,4
txn 2,page 2

Data Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 6
Misc...
offset: 4000
offset: 3000
txn 3,page 3,4
txn 2,page 2

Data Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 1
Misc...
TXN: 3
FRoot: 6
DRoot: 5

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 6
Misc...
offset: 4000
offset: 3000
txn 3,page 3,4
txn 2,page 2

Data Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 1
Misc...
TXN: 3
FRoot: 6
DRoot: 5

Meta Page

Pgno: 2
Misc...
offset: 4000
offset: 3000
2,xyz
1,blah

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 7
Misc...
offset: 4000
offset: 3000
txn 4,page 5,6
txn 3,page 3,4

Data Page

Pgno: 6
Misc...
offset: 4000
offset: 3000
txn 3,page 3,4
txn 2,page 2

Data Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 1
Misc...
TXN: 3
FRoot: 6
DRoot: 5

Meta Page

Pgno: 2
Misc...
offset: 4000
offset: 3000
2,xyz
1,blah

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

Pgno: 0
Misc...
TXN: 4
FRoot: 7
DRoot: 2

Meta Page

Pgno: 7
Misc...
offset: 4000
offset: 3000
txn 4,page 5,6
txn 3,page 3,4

Data Page

Pgno: 6
Misc...
offset: 4000
offset: 3000
txn 3,page 3,4
txn 2,page 2

Data Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 1
Misc...
TXN: 3
FRoot: 6
DRoot: 5

Meta Page

Pgno: 2
Misc...
offset: 4000
offset: 3000
2,xyz
1,blah

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page



  

S Y M S
The LDAP guys.

TM

A

Free Space Management

● Caveat: If a read transaction is open on a 
particular version of the DB, that version and 
every version after it are excluded from page 
reclaiming

● Thus, long-lived read transactions should be 
avoided, otherwise the DB file size may grow 
rapidly, devolving into the Append-Only 
behavior until the transactions are closed



  

S Y M S
The LDAP guys.

TM

A

Transaction Handling

● LMDB supports a single writer concurrent with many readers
● A single mutex serializes all write transactions
● The mutex is shared/multiprocess

● Readers run lockless and never block
● But for page reclamation purposes, readers are tracked

● Transactions are stamped with an ID which is a monotonically 
increasing integer
● The ID is only incremented for Write transactions that actually modify data
● If a Write transaction is aborted, or committed with no changes, the same 

ID will be reused for the next Write transaction



  

S Y M S
The LDAP guys.

TM

A

Transaction Handling

● Transactions take a snapshot of the currently valid meta 
page at the beginning of the transaction

● No matter what write transactions follow, a read 
transaction's snapshot will always point to a valid 
version of the DB

● The snapshot is totally isolated from subsequent writes
● This provides the Consistency and Isolation in ACID 

semantics



  

S Y M S
The LDAP guys.

TM

A

Transaction Handling

● The currently valid meta page is chosen based 
on the greatest transaction ID in each meta 
page
● The meta pages are page and CPU cache aligned
● The transaction ID is a single machine word
● The update of the transaction ID is atomic
● Thus, the Atomicity semantics of transactions are 

guaranteed 



  

S Y M S
The LDAP guys.

TM

A

Transaction Handling

● During Commit, the data pages are written and then 
synchronously flushed before the meta page is 
updated
● Then the meta page is written synchronously
● Thus, when a commit returns "success", it is guaranteed 

that the transaction has been written intact
● This provides the Durability semantics
● If the system crashes before the meta page is updated, 

then the data updates are irrelevant



  

S Y M S
The LDAP guys.

TM

A

Transaction Handling

● For tracking purposes, Readers must acquire a slot in 
the readers table
● The readers table is also in a shared memory map, but 

separate from the main data map
● This is a simple array recording the Process ID, Thread ID, 

and Transaction ID of the reader
● The first time a thread opens a read transaction, it must 

acquire a mutex to reserve a slot in the table
● The slot ID is stored in Thread Local Storage; subsequent 

read transactions performed by the thread need no further 
locks



  

S Y M S
The LDAP guys.

TM

A

Transaction Handling

● Write transactions use pages from the free list before 
allocating new disk pages
● Pages in the free list are used in order, oldest transaction first
● The readers table must be scanned to see if any reader is 

referencing an old transaction
● The writer doesn't need to lock the reader table when performing 

this scan - readers never block writers
– The only consequence of scanning with no locks is that the writer may 

see stale data
– This is irrelevant, newer readers are of no concern; only the oldest 

readers matter



  

S Y M S
The LDAP guys.

TM

A

Special Features

● Explicit Key Types
● Support for reverse byte order comparisons, as well 

as native binary integer comparisons
● Minimizes the need for custom key comparison 

functions, allows DBs to be used safely by 
applications without special knowledge
– Reduces the danger of corruption that Berkeley 

databases were vulnerable to, when custom key 
comparators were used



  

S Y M S
The LDAP guys.

TM

A

Special Features

● Append Mode
● Ultra-fast writes when keys are added in sequential 

order
● Bypasses standard page-split algorithm when 

pages are filled, avoids unnecessary memcpy's
● Allows databases to be bulk loaded at the full 

sequential write speed of the underlying storage 
system



  

S Y M S
The LDAP guys.

TM

A

Special Features

● Reserve Mode
● Allocates space in write buffer for data of user-

specified size, returns address
● Useful for data that is generated dynamically 

instead of statically copied
● Allows generated data to be written directly to DB 

output buffer, avoiding unnecessary memcpy



  

S Y M S
The LDAP guys.

TM

A

Special Features

● Fixed Mapping
● Uses a fixed address for the memory map
● Allows complex pointer-based data structures to be 

stored directly with minimal serialization
● Objects using persistent addresses can thus be 

read back with no deserialization
● Useful for object-oriented databases, among other 

purposes



  

S Y M S
The LDAP guys.

TM

A

Special Features

● Sub-databases
● Store multiple independent named B+trees in a single 

LMDB environment
● A SubDB is simply a key/data pair in the main DB, 

where the data item is the root node of another tree
● Allows many related databases to be managed easily

– Used in back-mdb for the main data and all of the associated 
indices

– Used in SQLightning for multiple tables and indices



  

S Y M S
The LDAP guys.

TM

A

Special Features

● Sorted Duplicates
● Allows multiple data values for a single key
● Values are stored in sorted order, with customizable 

comparison functions
● When the data values are all of a fixed size, the values 

are stored contiguously, with no extra headers
– maximizes storage efficiency and performance

● Implemented by the same code as SubDB support
– maximum coding efficiency



  

S Y M S
The LDAP guys.

TM

A

Special Features

● Atomic Hot Backup
● The entire database can be backed up live
● No need to stop updates while backups run
● The backup runs at the maximum speed of the 

target storage medium
● Essentially: write(outfd, map, mapsize);

– no memcpy's in or out of user space
– pure DMA from the database to the backup



  

S Y M S
The LDAP guys.

TM

A

Results

● Support for LMDB is already available for many 
open source projects:
● OpenLDAP slapd - back-mdb backend
● Cyrus SASL - sasldb plugin
● Heimdal Kerberos - hdb plugin
● OpenDKIM - main data store
● SQLite3 - replacing the original Btree code
● MemcacheDB - replacing BerkeleyDB
● Postfix - replacing BerkeleyDB
● CfEngine - replacing Tokyo Cabinet/QDBM



  

S Y M S
The LDAP guys.

TM

A

Results

● Wrappers for many other languages besides C 
are available:
● C++
● Erlang
● Lua
● Python
● Ruby
● Java wrapper being developed



  

S Y M S
The LDAP guys.

TM

A

Results

● Coming Soon
● Riak - Erlang LMDB wrapper already available
● SQLite4 - in progress
● MariaDB - in progress
● HyperDex - in progress
● XDAndroid - port of Android using SQLite3 based 

on LMDB
● Mozilla/Firefox - using SQLite3 based on LMDB



  

S Y M S
The LDAP guys.

TM

A

Results

● In OpenLDAP slapd
● LMDB reads are 5-20x faster than BerkeleyDB
● Writes are 2-5x faster than BerkeleyDB
● Consumes 1/4 as much RAM as BerkeleyDB

● In SQLite3
● Writes are 10-25x faster than stock SQLite3
● Reads .. performance is overshadowed by SQL 

inefficiency



  

S Y M S
The LDAP guys.

TM

A

Results

● In MemcacheDB
● LMDB reads are 2-200x faster than BerkeleyDB
● Writes are 5-900x faster than BerkeleyDB
● Multi-thread reads are 2-8x faster than pure-

memory Memcached
– Single-thread reads are about the same
– Writes are about 20% slower



  

S Y M S
The LDAP guys.

TM

A

Results

● Full benchmark reports are available on the 
LMDB page
● http://www.symas.com/mdb/

● Supported builds of LMDB-based packages 
available from Symas
● http://www.symas.com/
● OpenLDAP, Cyrus-SASL, Heimdal Kerberos
● MemcacheDB coming soon

http://www.symas.com/mdb/
http://www.symas.com/


  

S Y M S
The LDAP guys.

TM

A

Microbenchmark Results

● Comparisons based on Google's LevelDB
● Also tested against Kyoto Cabinet's TreeDB, 

SQLite3, and BerkeleyDB
● Tested using RAM filesystem (tmpfs), reiserfs 

on SSD, and multiple filesystems on HDD
● btrfs, ext2, ext3, ext4, jfs, ntfs, reiserfs, xfs, zfs
● ext3, ext4, jfs, reiserfs, xfs also tested with external 

journals



  

S Y M S
The LDAP guys.

TM

A

Microbenchmark Results

● Relative Footprint

● Clearly LMDB has the smallest footprint
● Carefully written C code beats C++ every time

text data bss dec hex filename

272247 1456 328 274031 42e6f db_bench

1675911 2288 304 1678503 199ca7 db_bench_bdb

90423 1508 304 92235 1684b db_bench_mdb

653480 7768 1688 662936 a2764 db_bench_sqlite3

296572 4808 1096 302476 49d8c db_bench_tree_db



  

S Y M S
The LDAP guys.

TM

A

Microbenchmark Results

Sequential
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

Read Performance

Small Records

SQLite3 TreeDB LevelDB BDB MDB

Random
0

100000

200000

300000

400000

500000

600000

700000

800000

Read Performance

Small Records

SQLite3 TreeDB LevelDB BDB MDB



  

S Y M S
The LDAP guys.

TM

A

Microbenchmark Results

Sequential
0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

7402 16514 299133 9133

30303030

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB

Random
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

7047 14518 15183 8646

1718213

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB



  

S Y M S
The LDAP guys.

TM

A

Microbenchmark Results

Sequential
1

10

100

1000

10000

100000

1000000

10000000

100000000

7402
16514

299133

9133

30303030

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB

Random
1

10

100

1000

10000

100000

1000000

10000000

7047
14518 15183

8646

1718213

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB

Log Scale



  

S Y M S
The LDAP guys.

TM

A

Microbenchmark Results

Sequential
0

2000

4000

6000

8000

10000

12000

14000

2029

5860

3366

1920

12905

Asynchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

Random
0

2000

4000

6000

8000

10000

12000

14000

2004

5709

742

1902

12735

Asynchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB



  

S Y M S
The LDAP guys.

TM

A

Microbenchmark Results

Sequential
0

2000

4000

6000

8000

10000

12000

14000

2068

5860

3138

1952

13215

Batched Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

Random
0

2000

4000

6000

8000

10000

12000

14000

2041

5709

3079

1939

13099

Batched Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB



  

S Y M S
The LDAP guys.

TM

A

Microbenchmark Results

Sequential
0

2000

4000

6000

8000

10000

12000

14000

2026

3121 3368

1913

12916

Synchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

Random
0

2000

4000

6000

8000

10000

12000

14000

1996 2162

745

1893

12665

Synchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB



  

S Y M S
The LDAP guys.

TM

A

Microbenchmark Results

Random
0

1

2

3

4

5

6

7

8

9

3.42

7.7

Synchronous Write Performance

Large Records, SSD, 40GB

LevelDB MDB

● Test random write 
performance when DB 
is 5x larger than RAM

● Supposedly a best 
case for LevelDB and 
worst case for B-trees

● Result in MB/sec, 
higher is better



  

S Y M S
The LDAP guys.

TM

A

Benchmarking...

● LMDB in real applications
● MemcacheDB, tested with memcachetest
● The OpenLDAP slapd server, using the back-mdb 

slapd backend



  

S Y M S
The LDAP guys.

TM

A

MemcacheDB

BDB 4.7 MDB Memcached
0.01

0.1

1

10

100

Read Performance

Single Thread, Log Scale

min

avg

max90th

max95th

max99th

maxm
se

c

BDB 4.7 MDB Memcached
0.01

0.1

1

10

100

1000

Write Performance

Single Thread, Log Scale

min

avg

max90th

max95th

max99th

maxm
se

c



  

S Y M S
The LDAP guys.

TM

A

MemcacheDB

BDB 4.7 MDB Memcached
0.01

0.1

1

10

Read Performance

4 Threads, Log Scale

min

avg

max90th

max95th

max99th

maxm
se

c

BDB 4.7 MDB Memcached
0.01

0.1

1

10

100

1000

Write Performance

4 Threads, Log Scale

min

avg

max90th

max95th

max99th

maxm
se

c



  

S Y M S
The LDAP guys.

TM

A

Slapd Results

mdb multi

mdb double

mdb single

hdb multi

hdb double

hdb single

00:00:00 00:14:24 00:28:48 00:43:12 00:57:36 01:12:00 01:26:24 01:40:48 01:55:12

00:29:47

00:24:16

00:27:05

00:52:50

00:45:59

00:50:08

Time to slapadd -q 5 million entries

real
user
sys

Time HH:MM:SS



  

S Y M S
The LDAP guys.

TM

A

Slapd Results

slapd size DB size
0

5

10

15

20

25

30

26

15.6

6.7

9

Process and DB sizes

hdb
mdb

G
B



  

S Y M S
The LDAP guys.

TM

A

Slapd Results

1st 2nd 2 4 8 16
00:00.00

00:43.20

01:26.40

02:09.60

02:52.80

03:36.00

04:19.20

05:02.40

04:15.40

00:16.20
00:24.62

00:32.17

01:04.82

03:04.46

00:12.47 00:09.94 00:10.39 00:10.87 00:10.81 00:11.82

Initial / Concurrent Search Times

hdb
mdb



  

S Y M S
The LDAP guys.

TM

A

Slapd Results

Searches/sec
0

20000

40000

60000

80000

100000

120000

140000

SLAMD Search Rate Comparison

hdb
mdb
other 1
other 2



  

S Y M S
The LDAP guys.

TM

A

Slapd Results

Modifies/sec
0

500

1000

1500

2000

2500

Modifications/sec, Reported by Zimbra

Single Node

hdb
mdb



  

S Y M S
The LDAP guys.

TM

A

Slapd Results

Modifies/sec
1

10

100

1000

10000

38.63

1998.14

Modifications/sec, Reported by Zimbra

Single Node, Log Scale

hdb
mdb



  

S Y M S
The LDAP guys.

TM

A

Slapd Results

Modifies/sec
0

200

400

600

800

1000

1200

1400

1600

Modifications/sec, Reported by Zimbra

Delta-Sync Provider

hdb
mdb



  

S Y M S
The LDAP guys.

TM

A

Slapd Results

Modifies/sec
1

10

100

1000

10000

18.92

1357.38

Modifications/sec, Reported by Zimbra

Delta-Sync Provider, Log Scale

hdb
mdb


